Catalog

Record Details

Catalog Search



Real analysis : measure theory, integration, and Hilbert spaces / Elias M. Stein

Stein, Elias M., 1931- (Author). Shakarchi, Rami. (Added Author).

Record details

  • ISBN: 0691113866
  • Physical Description: xix, 402 p. : il. ; 25 cm.
  • Publisher: Princeton, NJ : Princeton University Press, c2005.

Content descriptions

Bibliography, etc. Note:
Incluye bibliografía e índice.
Language Note:
English
Subject: Integrales generalizadas.
Teoría de la medida.
Análisis funcional.

Available copies

  • 1 of 1 copy available at IPICYT.

Holds

  • 0 current holds with 1 total copy.
Show Only Available Copies
Location Call Number / Copy Notes Barcode Shelving Location Status Due Date
Biblioteca Ipicyt QA320 S7 R4 2005 APL00553 Coleccion General Available -

Forewordvii
Introductionxv
1. Fourier series: completionxvi
2. Limits of continuous functionsxvi
3. Length of curvesxvii
4. Differentiation and integrationxviii
5. The problem of measurexviii
Chapter 1.. Measure Theory1
1. Preliminaries1
2. The exterior measure10
3. Measurable sets and the Lebesgue measure16
4. Measurable functions27
4.1. Definition and basic properties27
4.2. Approximation by simple functions or step functions30
4.3. Littlewood's three principles33
5*. The Brunn-Minkowski inequality34
6. Exercises37
7. Problems46
Chapter 2.. Integration Theory49
1. The Lebesgue integral: basic properties and convergence theorems49
2. The space L^1 of integrable functions68
3. Fubini's theorem75
3.1. Statement and proof of the theorem75
3.2. Applications of Fubini's theorem80
4*. A Fourier inversion formula86
5. Exercises89
6. Problems95
Chapter 3.. Differentiation and Integration98
1. Differentiation of the integral99
1.1. The Hardy-Littlewood maximal function100
1.2. The Lebesgue differentiation theorem104
2. Good kernels and approximations to the identity108
3. Differentiability of functions114
3.1. Functions of bounded variation115
3.2. Absolutely continuous functions127
3.3. Differentiability of jump functions131
4. Rectifiable curves and the isoperimetric inequality134
4.1*. Minkowski content of a curve136
4.2*. Isoperimetric inequality143
5. Exercises145
6. Problems152
Chapter 4.. Hilbert Spaces: An Introduction156
1. The Hilbert space L^2156
2. Hilbert spaces161
2.1. Orthogonality164
2.2. Unitary mappings168
2.3. Pre-Hilbert spaces169
3. Fourier series and Fatou's theorem170
3.1. Fatou's theorem173
4. Closed subspaces and orthogonal projections174
5. Linear transformations180
5.1. Linear functionals and the Riesz representation theorem181
5.2. Adjoints183
5.3. Examples185
6. Compact operators188
7. Exercises193
8. Problems202
Chapter 5.. Hilbert Spaces: Several Examples207
1 The Fourier transform on L^2
207. 2 The Hardy space of the upper half-plane213
3. Constant coefficient partial differential equations221
3.1. Weak solutions222
3.2. The main theorem and key estimate224
4*. The Dirichlet principle229
4.1. Harmonic functions234
4.2. The boundary value problem and Dirichlet's principle243
5. Exercises253
6. Problems259
Chapter 6.. Abstract Measure and Integration Theory262
1. Abstract measure spaces263
1.1. Exterior measures and Carathéodory's theorem264
1.2. Metric exterior measures266
1.3. The extension theorem270
2. Integration on a measure space273
3. Examples276
3.1. Product measures and a general Fubini theorem276
3.2. Integration formula for polar coordinates279
3.3. Borel measures on R and the Lebesgue-Stieltjes integral281
4. Absolute continuity of measures285
4.1. Signed measures285
4.2. Absolute continuity288
5*. Ergodic theorems292
5.1. Mean ergodic theorem294
5.2. Maximal ergodic theorem296
5.3. Pointwise ergodic theorem300
5.4. Ergodic measure-preserving transformations302
6*. Appendix: the spectral theorem306
6.1. Statement of the theorem306
6.2. Positive operators307
6.3. Proof of the theorem309
6.4. Spectrum311
7. Exercises312
8. Problems319
Chapter 7.. Hausdorff Measure and Fractals323
1. Hausdorff measure324
2. Hausdorff dimension329
2.1. Examples330
2.2. Self-similarity341
3. Space-filling curves349
3.1. Quartic intervals and dyadic squares351
3.2. Dyadic correspondence353
3.3. Construction of the Peano mapping355
4*. Besicovitch sets and regularity360
4.1. The Radon transform363
4.2. Regularity of sets when d >= 3370
4.3. Besicovitch sets have dimension 2371
4.4. Construction of a Besicovitch set374
5. Exercises380
6. Problems385
Notes and References389
Bibliography391
Symbol Glossary395
Index397

Additional Resources